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Distance measurements between spin labels by means of pulseScheme 1. Synthesis of the Bis-Gd** Complex?
EPR have attracted considerable attention because of the applica-
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tions to biological systenis? These determine the dipolar interaction j\o)\ B Hj\ok
between two electron spins, which for tv= 1/, spins is 2 N | N N = =
LT Ak

00,571
vep(0.1) = ZTPO (3cod0 — 1) (1)
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In eq 1,g: andg, are theg valuesr is the interspin distance, and /\N”_\ /_(_N\\/?’fo
0 is the angle betweenand the external magnetic field,BThe GdN _/ — \_/ — \— N---@E‘{;iiio
accessible distance range, &0 nm, allows one to obtain ) j—f \—& Z
structural information on biomolecules such as proteins, DNA and oo"\/N 5 N\/\oo
RNA, and their complexe%? Two nitroxide spin labels (NSL) are 77) \\(
introduced in the biomolecule, and the measurements are usually . z_t_ (@ransPACKPPh), Cul, dry BENH to40 o 67%
carried out at X-band frequencies9.5 GHz) on samples 0f50 onditions: (afrans )2, ul, OTy PN, T » 010
uL of 0.1-0.2 mM solutions {12 h accumulation time). Distance ggo/EECOZH/CHZCIZ' "t 121, 82%; () PH &7, GACh-3R0, 1, 5 h
measurements, however, are not limited to organic radicals, and
measurements involving metal ions were reported asWwell.

In principle, high field (HF)/high microwave frequency (HM- @)
WF)89 measurements can offer improvement in sensitivity over
X-band. However, due to thg anisotropy, the width of the NSL
EPR spectrum increases at HF, leading to a decrease in the spectral
density and of thdlip probability of the pumped spins. Therefore, (b)
excluding cases where the relative orientation of gifeames of ) Pump 10 e
the NSLs is of prime interest, HF measurements provide only Ka-band PI W-band ”

N

moderate gain (if any). i I g |

For HF distance measurements, a different class of spin labels, Zes ‘“’“’"-\| | fos nnsarve\h
the spectrum of whicimarrows with increasing B, such as high §°-4 || i % o |
spin half integer systems (HSS) like &d(S = 7/2) may be H J E 10K K
attractive. While the width of the entire spectrum of these ions is foz / \_ - _;__.:X:—_—_—J \/—:_:::-______
determined by the crystal field interaction (cfi), which is magnetic S % im0 ds “Uahin ew i s i ke
field independent, the sub-spectrum of the centrell,[1— |%/,0] Magnetic field, T Magnetic field, T

transition CT) narrows as Bincreases. Here we present first results  Figure 1. (a) The geometry of the bis-&d complex with a total charge
on the synthesis and pulse double electrelectron resonance of —2 and 14 unpaired electrons, optimized at the PBEO/sdd level of theory
(DEER) measurements between twodGitins connected via a rigid with Do, symmetry constraift (b) Two-pulse ED-EPR spectra of the bis-
: ; G+ complex recorded at Ka-band-{.5 mM, 13 K), W-band (0.2 mM,
linker, shown in Scheme 1. -

. v . . - 10, 25 K). The positions of the pump and observed pulses are shown on

The bis-Gd&" complex comprises two units of a pyridine-based the figure.

tetracarboxylate gadolinium complex, developed as an MRI contrast
agent® Double Sonogashira coupling of the pyridine tetracarboxy-  The DEER measurements were carried out at Ka- (33.78 and
late ested and 1,4-diethynylbenzeng)(provided the corresponding 29 6 GHz) and W- (94.9 GHZ) band&3The corresponding echo-
octa-estéf (Scheme 1). Deprotection of the octa-eSteand  getected (ED) EPR spectra are shown in Figure 1b. The width of
subsequent complexation of the octa-acid with excess of an aqueoughe W-bandCT is about 0.4 of that at Ka-band, as expected.

solution of GAC}-3H,0 gave the desired bis-&dcomplex5 in The broad background tH@T is superimposed on is due to all
86% yield. The paramagnetic complxvas characterized by IR, qther transitions, and their relative intensities are a function of the
MS (ESI), HRMS, and magnetic momenp & 15.63(2) us) temperature and spectrometer frequency. The relative populations,
analyses! P(Ms), of the Ms = %%/, energy levels for the frequencies and

t University of Al temperatures at which the experiments were carried out are listed
niversity o rizona. . _ - . .

¥ Department of Organic Chemistry, Weizmann Institute of Science. in Table 1. The four puls&, time domain DEER traces, shown in

§ Department of Chemical Physics, Weizmann Institute of Science. Figure 2a, exhibit a steep initial decay and shallow but clear
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Table 1. The Relative Populations of the Ms = £/, levels and the = 1/,. This is a consequence of the selection of €& which
DEER Modulation Depth, Aer = A[P(*/2) + P(—*/>)] excludes the detection of all pairs witls = £/, for one Gd*
P(=11y) P(t) A et but|Ms| > ¥, for the other. Thereforé.s depends oi, determined
33.78 GHz, 13K 0.128 0.113 0.19 4.6% from the sub-spectrum of th€T, and thepopulations of the
94.9 GHz, 10 K 0.096 0.061 0.36 5.6% +[Y,] states P(&1/,). The estimated!! and /¢ values are listed
94.9 GHz, 25K 0.126 0.105 0.36 8.3% in Table 1. The experimental values are nonetheless smaller by a

factor of about 2. This could be due to some distortion of the initial
part of the decay caused by the finite duration of the pumping pulse

1.001 and B inhomogeneity along the sample.

099 Ka-band, 13 K To conclude, this work shows that &dcomplexes have a

098] potential of being used as spin labels for HF distance measurements
2,01 in biological systems, provided that suitable labeling techniques,

Dd R A \60 similar to those used for NSL, are developed. They feature high

1.00 i

\ sensitivity, requiring only L of 0.1 mM solutions, affording high
0991 Wiband, 10K &,\ 39 effective B, values, allowing for very high repetition rates due to
0.98 \\,W short spin-lattice relaxation times<{300us), and have negligible

Normalized echo intensity

097 —— N 03 orientation selectivity. More work is certainly needed to optimize
100+ \_l the modulation depth and to understand the exact contribution of
098 Weband, 25K the transitions other than tH@T.
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modulations. This behavior is characteristic of a short distance with Supporting Information Available: Simulations of the Ka- and
some distribution. The corresponding magnitude real Fourier \y_pand ED-EPR spectra and brief discussion of its effect of cfi on
transforms (FT) are shown in Figure 2b, and the distance distribu- .~ gescription of the calculations of the modulation depth, detailed
tions obtained using DeerAnalysis200@re shown in Figure 2C.  synthesis and characterization of the bistGeomplex, and results of
All FT spectra show a peak at 6:8.4 MHz, which corresponds  DFT calculations. This material is available free of charge via the
to a distance of 22.05 nm. The distance was derived from eq 1, Internet at http://pubs.acs.org.
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